

ISMRM 27TH ANNUAL MEETING & EXHIBITION

Palais des congrès de Montréal 🦊 Montréal, QC, Canada 💥 11–16 May 2019

Declaration of Financial Interests or Relationships

Speaker Name: Aaron Oliver-Taylor

I have the following financial interest or relationship to disclose with regard to the subject matter of this presentation:

Company Name: Gold Standard Phantoms Limited Type of Relationship: Employee, Shareholder

A multi-site round-robin assessment of ASL using a perfusion phantom

J.C.W. Siero^{4,9}, J.P. Margues¹⁰, F. Vanhevel¹⁵, S. Sunaert¹¹, R.J.H. Borra¹², M.J.P. van Osch¹³, X. Golay^{1,14}, E. Achten⁵

Introduction

Since the publication of the ASL White Paper¹in 2015, there is renewed interest in ASL.

Mutsaerts et al. Neuroimage (2015)

been established⁶

therapy³.

Numerous reproducibility studies⁴ have determined the CoV of CBF, leading to its use as biomarker in cross-sectional studies⁵.

FTD

Steketee et al. Eur. Radiol. (2015)

Clement et al. JCBFM (2018) ASL has been shown to be a valid biomarker of neurological disease onset² and response to Sources of potential physiological confounds have

However...

Different MRI system hardware

So far, it has not been possible to compare across ASL implementations, accounting only for differences in hardware. In this study we set out to assess the effective reproducibility of CBF estimates using a perfusion phantom⁷.

1. Alsop et al. MRM 2015; 73: 102-116. 2. Steketee, et al. Eur. Radiol. 26, 244-253, 2016. 3. Wang, et al. J. Pharmacol. Exp. Ther. 337, 359-366, 2011. 4. Mutsaerts, et al. Neuroimage 113, 2015. 5. Sullivan, et al. Radiology. 2015 Dec;277(3):813-25. 6. Clement, et al, JCBFM, 2018 Sep:38(9);1418-1437, 7, Oliver-Taylor et al, Proc, ISMRM, 2017, Abstract #0681

Individual

A multi-site round-robin assessment of ASL using a perfusion phantom

A. Oliver-Taylor¹, T. Hampshire¹, H.J. Mutsaerts^{2,3,4}, P. Clement⁵, E. Warnert⁶, A. Harteveld⁴, J.P.A. Kuijer², K. Baas³, J. Petr^{7,8}, J.C.W. Siero^{4,9}, J.P. Marques¹⁰, F. Vanhevel¹⁵, S. Sunaert¹¹, R.J.H. Borra¹², M.J.P. van Osch¹³, X. Golay^{1,14}, E. Achten⁵

Gold Standard Phantoms Limited, London, UK, ²VUmc, Amsterdam, Netherlands, ³AMC, Amsterdam, Netherlands, ⁴UMCU, Utrecht, Netherlands, ⁵Ghent University, Ghent, Belgium, ⁶Erasmus MC, Rotterdam, Netherlands, ⁷HZRD, Dresden, Germany, ⁸RIT, Rochester, NY, USA, ⁹Spinoza Centre for Neuroimaging, Amsterdam, Netherlands, ¹⁰Donders Institute, Nijmegen, Netherlands, ¹¹KULeuven, Leuven, Belgium, ¹²UMCG, Groningen, Netherlands, ¹³LUMC, Leiden, Netherlands, ¹⁴ION, UCL, London, United Kingdom, ¹⁵UZ Antwerpen, Antwerp, Belgium

Perfusion Phantom

MRI Compatible Piezoelectric pump

Delivers perfusate at a controlled known flow rate round the system. Automatic flow control using a ARM microcontroller and calibrated flow meter. Wireless communications for control and realtime telemetry of measured flow rate and temperature

- Water based
- T₁~1800ms at 3T (Nickel Chloride)
- Non-ionic surfactant (improved wetting)
- viscosity ~1.65mPA.s @ 20°C (water soluble polymer)
- Non-toxic preservative (methylisothiazolinone based).

Perfusion Chamber

Label Chamber

"carotid" tube.

Represents the 'neck' of the phantom, containing the inflow

Simulates the capillary bed by using six 4.75x116mm discs of sintered UHMW Polyethylene (mean pore size 7um, porosity 32%)

A multi-site round-robin assessment of ASL using a perfusion phantom

A. Oliver-Taylor¹, T. Hampshire¹, H.J. Mutsaerts^{2,3,4}, P. Clement⁵, E. Warnert⁶, A. Harteveld⁴, J.P.A. Kuijer², K. Baas³, J. Petr^{7,8}, J.C.W. Siero^{4,9}, J.P. Marques¹⁰, F. Vanhevel¹⁵, S. Sunaert¹¹, R.J.H. Borra¹², M.J.P. van Osch¹³, X. Golay^{1,14}, E. Achten⁵

¹Gold Standard Phantoms Limited, London, UK, ²VUmc, Amsterdam, Netherlands, ³AMC, Amsterdam, Netherlands, ⁴UMCU, Utrecht, Netherlands, ⁵Ghent University, Ghent, Belgium, ⁶Erasmus MC, Rotterdam, Netherlands, ⁷HZRD, Dresden, Germany, ⁸RIT, Rochester, NY, USA, ⁹Spinoza Centre for Neuroimaging, Amsterdam, Netherlands, ¹⁰Donders Institute, Nijmegen, Netherlands, ¹¹KULeuven, Leuven, Belgium, ¹²UMCG, Groningen, Netherlands, ¹³LUMC, Leiden, Netherlands, ¹⁴ION, UCL, London, United Kingdom, ¹⁵UZ Antwerpen, Antwerp, Belgium

Study Design

Acquire ASL measurements at 2 bulk flow rates: 200ml/min and 350ml/min

Laser marker was set to the same reference point on the phantom, the phantom aligned in the head-foot direction, and levelled using foam pads.

No.	Site	MRI Vendor	Model	SW	Coil	ASL Sequence	Label Type	Acquisition	Label Duration / TI1 (ms)	PLD/TI (ms)
1	1	Siemens	Prisma Fit	VE11	64ch	C2P (Bremen)	pCASL	3D-GRASE	1800	1800
2	2	GE	Sigma PET/MR	DV26	8ch	Product	pCASL	Spiral FSE	1450	2025
3	2	Philips	Achieva	R5.4.0		Product	pCASL	3D-GRASE	1800	1800
4	3	Siemens	Prisma Fit	VE11	32ch	C2P (Bremen)	pCASL	3D-GRASE	1800	1800
5	4	Siemens	Prisma	VE11C	32/64ch	Product	PASL (FAIR)	3D-GRASE	700	1800
6	4	Siemens	Skyra	VE11C	64ch	Product	PASL (FAIR)	3D-GRASE	700	1800
7	5	Siemens	Prisma	VE11C	32ch	Product	PASL (FAIR)	3D-GRASE	700	1800
8	5	Siemens	Skyra	VE11C	32ch	Product	PASL (FAIR)	3D-GRASE	700	1800
9	6	Philips	Ingenia	R5.3.1	32ch	Product	pCASL	2D-EPI	1800	1800
10	6	Philips	Achieva	R5.3.1	8ch	Product	pCASL	2D-EPI	1800	1800
11	7	Philips	Ingenia	R5.4.0	32ch	Product	pCASL	3D-GRASE	1800	1800
12	8	Philips	PET/MR	R3.2.2	8ch	Product	pCASL	2D-EPI	1800	1800
13	8	GE	Discovery MR750	DV25	8ch	Product	pCASL	Spiral FSE	1450	1525/2025
14	9	Philips	Ingenia	R5.3.1	32ch	Product	pCASL	2D-EPI	1800	1800
15	9	Philips	Ingenia	R5.3.0	32ch	Product	pCASL	2D-EPI	1800	1800
16	10	GE	Discovery MR750	DV25	8ch/32ch	Product	pCASL	Spiral FSE	1450	1525/2025
17	11	Philips	Achieva	R5.3.1	32ch	Product	pCASL	2D-EPI	1800	1800

Analysis Groups

A multi-site round-robin assessment of ASL using a perfusion phantom

A. Oliver-Taylor¹, T. Hampshire¹, H.J. Mutsaerts^{2,3,4}, P. Clement⁵, E. Warnert⁶, A. Harteveld⁴, J.P.A. Kuijer², K. Baas³, J. Petr^{7,8}, J.C.W. Siero^{4,9}, J.P. Marques¹⁰, F. Vanhevel¹⁵, S. Sunaert¹¹, R.J.H. Borra¹², M.J.P. van Osc<u>h¹³, X. Golay^{1,14}, E. Achten⁵</u>

Gold Standard Phantoms Limited, London, UK, ²VUmc, Amsterdam, Netherlands, ³AMC, Amsterdam, Netherlands, ⁴UMCU, Utrecht, Netherlands, ⁵Ghent University, Ghent, Belgium, ⁶Erasmus MC, Rotterdam, Netherlands, ⁷HZRD Dresden, Germany, ⁸RIT, Rochester, NY, USA, ⁹Spinoza Centre for Neuroimaging, Amsterdam, Netherlands, ¹⁰Donders Institute, Nijmegen, Netherlands, ¹¹KULeuven, Leuven, Belgium, ¹²UMCG, Groningen, Netherlands, ¹³LUMC, Leiden, Netherlands, ¹⁴ION, UCL, London, United Kingdom, ¹⁵UZ Antwerpen, Antwerp, Belgium

A multi-site round-robin assessment of ASL using a perfusion phantom

A. Oliver-Taylor¹, T. Hampshire¹, H.J. Mutsaerts^{2,3,4}, P. Clement⁵, E. Warnert⁶, A. Harteveld⁴, J.P.A. Kuijer², K. Baas³, J. Petr^{7,8}, J.C.W. Siero^{4,9}, J.P. Marques¹⁰, F. Vanhevel¹⁵, S. Sunaert¹¹, R.J.H. Borra¹², M.J.P. van Osc<u>h¹³, X. Golay^{1,14}, E. Achten⁵</u>

Gold Standard Phantoms Limited, London, UK, ²VUmc, ^Amsterdam, Netherlands, ³AMC, Amsterdam, Netherlands, ⁴UMCU, Utrecht, Netherlands, ⁶Ghent University, Ghent, Belgium, ⁶Erasmus MC, Rotterdam, Netherlands, ⁷HZRD, Dresden, Germany, ⁸RIT, Rochester, NY, USA, ⁹Spinoza Centre for Neuroimaging, Amsterdam, Netherlands, ¹⁰Donders Institute, Nijmegen, Netherlands, ¹¹KULeuven, Leuven, Belgium, ¹²UMCG, Groningen, Netherlands, ¹³LUMC, Leiden, Netherlands, ¹⁴ION, UCL, London, United Kingdom, ¹⁵UZ Antwerpen, Antwerp, Belgium

Results Philips 2D-EPI pCASL

CBF in the middle slice across all systems. Image quality, including artefacts and distortions are comparable.

Example data from System 17

Mean CBF values are reasonably consistent for both flow rates

Fitted Mean CBF values are less so – especially at 200ml/min. This is possibly an artefact of the fitting algorithm

No observable temperature dependence on phantom CBF values

A multi-site round-robin assessment of ASL using a perfusion phantom

A. Oliver-Taylor¹, T. Hampshire¹, H.J. Mutsaerts^{2,3,4}, P. Clement⁵, E. Warnert⁶, A. Harteveld⁴, J.P.A. Kuijer², K. Baas³, J. Petr^{7,8}, J.C.W. Siero^{4,9}, J.P. Marques¹⁰, F. Vanhevel¹⁵, S. Sunaert¹¹, R.J.H. Borra¹², M.J.P. van Osch¹³, X. Golay^{1,14}, E. Achten⁵

Gold Standard Phantoms Limited, London, UK, ²VUmc, Amsterdam, Netherlands, ³AMC, Amsterdam, Netherlands, ⁴UMCU, Utrecht, Netherlands, ⁵Ghent University, Ghent, Belgium, ⁶Erasmus MC, Rotterdam, Netherlands, ⁷HZRD, Dresden, Germany, ⁸RIT, Rochester, NY, USA, ⁹Spinoza Centre for Neuroimaging, Amsterdam, Netherlands, ¹⁰Donders Institute, Nijmegen, Netherlands, ¹¹KULeuven, Leuven, Belgium, ¹²UMCG, Groningen, Netherlands, ¹³LUMC, Leiden, Netherlands, ¹⁴ION, UCL, London, United Kingdom, ¹⁵UZ Antwerpen, Antwerp, Belgium

Results Siemens C2P (Bremen) 3D-GRASE pCASL

Results Siemens 3D-GRASE FAIR

CBF values much higher than with pCASL because TI (1800ms) is half of the label duration + PLD (3600ms).

Fitting was not successful for this data. Global mean values are similar, however there's a significant difference between Systems 5&6 and 7&8.

A multi-site round-robin assessment of ASL using a perfusion phantom

A. Oliver-Taylor¹, T. Hampshire¹, H.J. Mutsaerts^{2,3,4}, P. Clement⁵, E. Warnert⁶, A. Harteveld⁴, J.P.A. Kuijer², K. Baas³, J. Petr^{7,8}, J.C.W. Siero^{4,9}, J.P. Marques¹⁰, F. Vanhevel¹⁵, S. Sunaert¹¹, R.J.H. Borra¹², M.J.P. van Osc<u>h¹³, X. Golay^{1,14}, E. Achten⁵</u>

Gold Standard Phantoms Limited, London, UK, ²VUmc, ^Amsterdam, Netherlands, ³AMC, Amsterdam, Netherlands, ⁴UMCU, Utrecht, Netherlands, ⁵Ghent University, Ghent, ^BElgium, ⁶Erasmus MC, Rotterdam, Netherlands, ⁷HZRD, Dresden, Germany, ⁸RIT, Rochester, NY, USA, ⁹Spinoza Centre for Neuroimaging, Amsterdam, Netherlands, ¹⁰Donders Institute, Nijmegen, Netherlands, ¹¹KULeuven, Leuven, Belgium, ¹²UMCG, Groningen, Netherlands, ¹³LUMC, Leiden, Netherlands, ¹⁴ION, UCL, London, United Kingdom, ¹⁵UZ Antwerpen, Antwerp, Belgium

A multi-site round-robin assessment of ASL using a perfusion phantom

A. Oliver-Taylor¹, T. Hampshire¹, H.J. Mutsaerts^{2,3,4}, P. Clement⁵, E. Warnert⁶, A. Harteveld⁴, J.P.A. Kuijer², K. Baas³, J. Petr^{7,8}, J.C.W. Siero^{4,9}, J.P. Marques¹⁰, F. Vanhevel¹⁵, S. Sunaert¹¹, R.J.H. Borra¹², M.J.P. van Osch¹³, X. Golay^{1,14}, E. Achten⁵

Gold Standard Phantoms Limited, London, UK, ²VUmc, ^Amsterdam, Netherlands, ³AMC, Amsterdam, Netherlands, ⁴UMCU, Utrecht, Netherlands, ⁵Ghent University, Ghent, ^BBelgium, ⁶Erasmus MC, Rotterdam, Netherlands, ⁷HZRD, Dresden, Germany, ⁸RIT, Rochester, NY, USA, ⁹Spinoza Centre for Neuroimaging, Amsterdam, Netherlands, ¹⁰Donders Institute, Nijmegen, Netherlands, ¹¹KULeuven, Leuven, Belgium, ¹²UMCG, Groningen, Netherlands, ¹³LUMC, Leiden, Netherlands, ¹⁴ION, UCL, London, United Kingdom, ¹⁵UZ Antwerpen, Antwerp, Belgium

Discussion and Conclusions

Coefficient of Variation for each sub-group

Philips 2D-EPI pCASL

Flow Rate	CoV CBF Mean
(ml/min)	(%)
200	9.1
350	11.8

Siemens 3D-GRASE FAIR

Flow Rate	CoV CBF Mean
(ml/min)	(%)
200	7.3
350	17.6

GE 3D-Spiral pCASL								
	Flow Rate	CoV CBF Mean						
PLD (MS)	(ml/min)	(%)						
1525	200	3.1						
1525	350	0.7						
2025	200	3.5						
2025	350	2.8						

- Significant variation in the quantitative values obtained within the sub-groups.
- Not possible to make comparisons between implementations.
- No measure of variability on a single system has been made difficult to know if differences are systematic or random.
- Fitting to signal distributions needs some more work as they don't work so well for some implementations.
- Phantom reproducibility seems good, but this is not known quantitatively to give a lower bound of measurable variability.

Future work

- Establish phantom reproducibility (including effects of placement, alignment etc)
- Perform test-retest on each system.
- Standardise by using similar ASL flavours and common label/acquisition parameters.
- Better statistics to determine statistically significant differences between systems.

Thank you!

Acknowledgements: Pieter Vandemaele (Ghent University, Ghent, Belgium) for advice on standardised phantoms positioning.

GOLD STANDARD PHANTOMS

Author email: aaron.oliver-taylor@goldstandardphantoms.com